1. What is the x-coordinate of the point of inflection on the graph of $y = xe^x$?

(A) -2

(B) −1

(C) 0

(D) 1

(E) 2

- 1. If the function f is defined by $f(x) = e^x(x^2 + 1)$, how many points of inflection exist on the graph of f?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (E) 4

16. The graph of $y = 3x^5 - 10x^4$ has an inflection point at

(A) (0,0) and (2,-64)

(B) (0,0) and (3,-81)

(C) (0,0) only

(D) (-3, 81) only

(E) (2, -64) only

19. The function defined by $f(x) = (x-1)(x+2)^2$ has inflection points at x =

(A) -2 only

(B) -1 only

(C) 0 only

(D) -2 and 0 only

(E) -2 and 1 only

- 13. Let $f(x) = x^4 + ax^2 + b$. The graph of f has a relative maximum at (0, 1) and an inflection point when x = 1. The values of a and b are
 - (A) a = 1, b = -6
 - (B) a = 1, b = 6
 - (C) a = -6, b = 5
 - (D) a = -6, b = 1
 - (E) a = 6, b = 1

- On which of the following intervals, is the graph of the curve $y = x^5 5x^4 + 10x + 15$ concave up? II. 0 < x < 3 III. x > 3
 - I. x < 0

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) II and III only

4. The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that

(A)
$$x < 0$$

(C)
$$x < 5$$

(D)
$$x > 0$$

(A)
$$x < 0$$
 (B) $x < 2$ (C) $x < 5$ (D) $x > 0$ (E) $x > 2$

$$y'' = -10(x-2)^{-3}$$

- 9. On which interval is the graph of $f(x) = 4x^{3/2} 3x^2$ both concave down and increasing?
 - (A) (0, 1)
 - (B) $\left(0,\frac{1}{2}\right)$
 - (C) $\left(0,\frac{1}{4}\right)$
 - (D) $(\frac{1}{4}, \frac{1}{2})$
 - (E) $\left(\frac{1}{4},1\right)$

22. If $f(x) = x^3 - 5x^2 + 3x$, then the graph of f is decreasing and concave down on the interval

(A) $\left(0, \frac{1}{3}\right)$ (B) $\left(\frac{1}{3}, \frac{2}{3}\right)$ (C) $\left(\frac{1}{3}, \frac{5}{3}\right)$ (D) $\left(\frac{5}{3}, 3\right)$ (E) $(3, \infty)$

23. If $f(x) = \frac{x^2+1}{e^x}$, then the graph of f is decreasing and concave down on the interval

(A) $(-\infty,0)$ (B) (0,1) (C) (1,3) (D) (3,4) (E) $(4,\infty)$

The graph of $y = x^4 - x^2 - e^{2x}$ changes concavity at $x = x^4 - x^2 - e^{2x}$ 8.

(A) -0.641 (B) -0.531 (C) -0.421 (D) -0.311

(E) -0.201

- 7. An equation of the line tangent to the graph of $y = x^3 + 3x^2 + 2$ at its point of inflection is
 - (A) y = -3x + 1
 - (B) y = -3x 7
 - (C) y = x + 5
 - (D) y = 3x + 1
 - (E) y = 3x + 7

- 14. If f(x) is defined on $-\pi \le x \le \pi$ and $\frac{dy}{dx} = \frac{\cos x}{x^2 + 1}$, which of the following statements about the graph of y = f(x) is true?
 - (A) The graph has no relative extremum.
 - (B) The graph has one point of inflection and two relative extrema.
 - (C) The graph has two points of inflection and one relative extremum.
 - (D) The graph has two points of inflection and two relative extrema.
 - (E) The graph has three points of inflection and two relative extrema.

- 14. Suppose the continuous function f is defined on the closed interval [0, 3] such that its derivative f' is defined by $f'(x) = e^x \sin(x^2) 1$. Which of the following are true about the graph of f?
 - f has exactly one relative maximum point.
 - f has two relative minimum points.
 - III. f has two inflection points.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I, II, III

15. At x = 0, which of the following is true of the function f defined by $f(x) = \frac{x^2}{1 + \sin x} + e^{-2x}$?

(A) f is discontinous

(B) f is increasing

(C) f is decreasing

(D) f has a relative minimum

(E) f has a relative maximum

- 17. Which of the following is true about the graph of $f(x) = \ln |x^2 4|$ in the interval (-2, 2)?
 - (A) f is increasing.
 - (B) f attains a relative minimum at (0, 0).
 - (C) f has a range of all real numbers.
 - (D) f is concave down.
 - (E) f has an asymptote at x = 0.